A comparison of numerical solutions of the one-
dimensional unsaturated—saturated flow and mass

transport equations™

M. Th. VAN GENUCHTEN

US Salinity Laboratory, USDA, ARS, 4500 Glenwood Drive, Riverside, CA 92501, USA

INTRODUCTION

The simultaneous transport of water and solutes under
transient unsaturated-saturated: conditions plays an
important role in many branches of agriculture and
engineering. In agriculture, for example, many chemicals
such as fertilizers, pesticides, as well as those naturally
present in irrigation waters, are routinely applied to the
field. Some of these chemicals will remain in the root zone
or will be taken up by plant roots, while others are subject
to leaching, thereby becoming potential groundwater
pollutants. The frequent use of land for the disposal of a
wide variety of domestic and industrial wastes further
accentuates the importance of the unsaturated zone. A
clear understanding of chemical transport in the
unsaturated zone, including proper quantification of the
relevant transport processes, is therefore important for
both agricultural and environmental engineers. Extensive
research in this area has led to a large number of papers
dealing with unsaturated zone transport. Most of the
earlier numerical studies have used finite difference
techniques for solution of the governing equations® 4,
although recently also several finite element solutions
have been published®®. It is the purpose of this paper to
compare the accuracy and computational efficiency of
several numerical schemes for solution of the governing
one-dimensional flow and mass transport equations.

GOVERNING EQUATIONS

One-dimensional vertical * flow of water in an
unsaturated—saturated medium is described by

_ 9 oh oh :
L(h)= $<K§)—C«—K> ~C==0 )

where C = the specific moisture capacity, h =the pressure
head, K=the hydraulic conductivity, x=the vertical
coordinate (positive down), t = the time. The coefficient C
in equation (1) is given by:

6. oS,

where O=the volumetric moisture content, e¢=the
porosity, S,=the specific storage coefficient, S, =the
degree of fluid saturation.
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The second term on the right-hand side of equation (2)
is zero for a fully saturated medium. The term containing
S, on the other hand, can often be neglected when only
an unsaturated zone is present. C in that case can be
closely approximated by the slope of the soil moisture
retention curve, 9(h):

00
C_g}; (3)

The governing equation for chemical transport is taken
as:

M1t

3 dc é
L{c) E(el)@—x — qc> —07(00 +pS)=0 4

where ¢ =the solution concentration, D =the dispersion
coefficient, S=the adsorbed concentration, g=the
volumetric flux, p =the bulk density.

The solution of equation (4) requires knowledge of both
fand gq. 0 is assumed to be a unique function of h, and can
therefore be obtained from solutions of equation (1). Also
q follows immediately from solutions of equation (1) by
making use of Darcy’s law as follows:

oh
q=—Kafx+K (5)

The dispersion coefficient (D) represents the effects of both
molecular diffusion and mechanical dispersion, and is
assumed to be adequately defined by:

D=Dyt+ Ay (6)

where Dy,=the molecular diffusion coefficient, =the
tortuosity factor, A=the dispersivity, v=the average
pore-water velocity: v=g/0.

The solution of equation (4) requires also an expression
relating the adsorbed concentration (S) with the solution
concentration (c). This study considers only single-ion
equilibrium transport, and the general adsorption
isotherm is described by a linear (or linearized) isotherm
of the form:

S=ke (7

where k is an empirical distribution coefficient.
Substitution of equation (7) into equation (4) gives the
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form of the mass transport equation used here:

0 dc 0
Lic)= 6D— _ ) =
§(€) I < e qc) 4 +A8Rc)=0 (8)
where the retardation factor R is defined as:

R=147% 9)

NUMERICAL SOLUTION OF THE FLOW
EQUATION

Equations (1) and (8) will be solved using the Galerkin-
finite clement method. Because this method has been
discussed at length elsewhere”®, only the most pertinent
steps in the solution procedure will be given here.
Additional details are given by van Genuchten®'°. In the
finite element approach the dependent variable, A, is
approximated by a finite series of the form:

)= 3 paf) (10)

where the @ {x) are the selected basic functions and the
a{t) the associated, unknown, time-dependent coefficients
which represent solutions of equation (1) at specified
nodes within the solution domain. The Galerkin
approach requires that the residual L, (h), obtained by
substituting equation (10) into (1), be orthogonal to each
of the n selected basis functions:

i

[ [Z(pjx)a f)
0 .

pdx)dx=0 i=12,...n (11)

where [ is the depth of the simulated soil profile (0 < x < 1).
Substituting equation (1) into (I11) and applying
integration by parts to the spatial derivatives leads to the
matrix equation:

MMW+wﬂ }{m (12
where
_ d<p,d</>l
[Al-j]«f T a9 (13a)
[Bi_i]:JvC(pj(pidx (13b)
0
{Xi={a;} (13¢)
I 1
do;
{F} qe; +JKdde (13d)
Q 0
G=- (K?E—K> (13¢)
0x
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Equation (12) defines a set of n ordinary differential
equations with non-linear coefficients. A finite difference
scheme may be introduced to approximate the time
derivative in the matrix equation. Define for that purpose
the following approximations:

dX 1+ A2 X t+AL__ X i

{X}t+At/2ﬁa){X}!+At+'(1—CL)){X}Z (14b)
where At is the time step and w a temporal weighting
coefficient. By defining matrix equation (12) at the half-
time level (t+4-At/2), and introducing approximations
(14a) and (14b), the following set of n algebraic equations
results:

[P]l+At/2{X}r+At: [Q]t+At/2!{X}t+ {F}H-At/Z (15)

where

1
[P1=w[A]+[E] (162)

[0]=(@~ 1[4+, 5] (165

When w=1 an implicit in time finite difference scheme
results, even though the various coefficients are evaluated
at the half-time level®**. When w = 1/2, on the other hand,
a time-centred, Crank—Nicolson type algorithm is
obtained!2,

To be able to solve equation (15), one needs estimates of
the coefficients K and C in equation (13) at the half-time
level. Because these coefficients depend on the pressure
head, it is necessary to have an estimate of the pressure
head distribution, h, at the half-time level. For each new
time step this distribution is obtained through linear
extrapolation from the old distributions as follows:

ht+At/2 ht 2AA;0(hﬁr__];l‘t—Az) (17)

where At, and At, are the old and new time increments,
respectively. Because equation (5) is non-linear, the initial
estimate must be improved by means of an iterative
process. During each iteration the most recent
distribution of A'**! obtained by solving equation (15)
and making use of equation (10), is used to obtain a new
estimate for the half-time level:

]jl‘t+At/2=%(ﬁz+At+lfD‘r) (18)

The iterative process continues until a satisfactory degree
of convergence is obtained. The criterion of convergence,
in its most general form, is given by:

RS L — R < g+ po Y (19)

where k represents the iteration number, h;= h(x,), and
where p, and u, are the selected absolute and relative
error criteria.
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Basis functions
Equation (15) will be solved for two sets of basis
functions: zero-order continuous linear and first-order
continuous cubic Hermitian basis functions. For each
linear element, equation (10) reduces to:
h(x,t) = @200 H | (£) + @30 H ,(1) (20)
where H,(t) and H,(t) represent the unknown pressure
head values at the two corner nodes of the element. The

basis functions can be written in terms of a local (&)
coordinate system, as follows:

1
O] =5l +56E)  Go==1 (21)
where
Ux ~—
5‘BKXLI)*1 (x; <X <)) (22)

and where Ax =(x, — x ) represents the nodal distance of
the element.

In the case of the Hermitian basis functions, one not
only solves for the function itself, but also for its spatial
derivatives. Equation (10), as applied to each local
element, reduces to:

2

M= 3 [%,.(X)H“,.([H(pij(x)‘%(t)] 3)

ji=1

where

1
0h= =g+ M- (G=%1)  (24)

A
pli= Ll e =) (Go=11) (4b)

Numerical implementation

At least two approaches are possible to evaluate the
integrals in the coefficient matrices (13). One possible
approach is to expand the non-linear coefficients K and C
in terms of the basis functions and the values of K and C at
the nodes, analogous to equations (20) and (23). This
approach was used for the linear finite element scheme,
the advantage being that the relatively simple integrations
in equation (13) need to be carried out only once. When
applied to the coefficient C in equation (13b), for example,
we have:

()= C,0%E) + C,0%8) (25)
where C, and C, represent the nodal values of C.
Substituting equation (25) into equation (13b), using
equations (21) and (22) for the integrations, and assuming
an equal spacing between the nodes (constant Ax) leads
then to the following approximation of [B] (only the
tridiagonal entries of the ith row of the matrix are given).

Ax
[B‘j] = ﬁfciﬂ +C G +6C+C, C+Ciyyl
(26)

For the more general case of variable Ax, the above matrix
will become somewhat more complicated; the derivation,
however, remains essentially the same.

Another possible approach for evaluating the integrals
in equation (13) would be through the use of a numerical
integration method, for example by using Gaussian
quadrature. A disadvantage of this approach is that the
integrations now have to be carried out during each
iteration within each time step. The first approach was
taken in conjunction with linear finite elements, since this
approach resulted in a computationally more efficient
scheme, while the accuracy remained approximately the
same. Poor results, however, were obtained when the first
approach was used for the Hermitian basis functions. The
method, which requires evaluation of (dK/dx) and
(dC/dx) at the nodes, produced severe oscillations in
computed pressure head distributions and also
introduced serious mass balance errors when infiltration
in relatively dry soil was simulated. The second approach,
numerical integration, was hence used for the Hermitian
scheme. Several methods are available for this integration,
such as Gaussian and Lobatto integration (see equations
25429 and 25432 of Abramowitz ard Stegun'?,
respectively). While a Gaussian integration scheme is
probably the most accurate for a given number of
integration points, it does not take full advantage of the
properties of the Hermitian basis functions. Inspection
of these functions (equation 24) shows that they become
zero at one (@g;) or both corner nodes (¢}). The
computational effort hence can be reduced by locating
some of the integration points at the nodes (‘Lobatto’
integration).

An alternative finite element formulation may be
developed based on the lumped-mass approach. Such an
approach was first used by Neuman!? to speed up
numerical convergence when simulating infiltration into
extremely dry soil. Mass-lumping is achieved by defining
the nodal values of the time derivative as weighted
averages over the entire flow region as:

! 1

oh OH,
JCE(pidx= 3 JC(pidx
]

0

(27)

Application of equation (27) will lead to a different
coefficient matrix for the time derivative (matrix B,
equation 13b). For example, for linear finite elements one
obtains:

A
[Bl="10 Coy+4C+Cpy 01 (23)

The diagonal entries in equation (28) are identical to the
row sums of the entries in equation (26). The mass-lumped
linear finite element scheme can be further simplified by
redefining [B] as:

[B;]=Ax[0 C; 0] (29)

In this way a finite difference scheme is obtained. The
complete finite difference expansion of equation (15) is:

a KOy b BT d BT =S (30)
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where
a=—2K._, +K 31
= Ki-1 T K3 (31a)
Ax . o ,
—B(,i+m(Ki,1+.2Ki+Ki+1) (31b)
T
d= 2Ax(Ki+Ki+1) (31¢)
( 1) ¢ [lo—1)
f:_ ZﬁKl 1+K) h1+1 2A (K +K1+1)

Ax w—1) 1 _
hl[ +'(~2E)(Ki-—l+2Ki+Ki+l):|+§(Ki—1_J(i+2)
(31d)

NUMERICAL SOLUTION OF THE TRANSPORT
EQUATION

Application of the finite element method to the solution of
the transport equation leads to an equation similar to (12).
This equation shows that the finite element method is
used only to approximate the spatial derivatives, while the
time derivative has been left intact. The common
approach, as used earlier for the flow equation, is to apply
finite difference techniques to the resulting matrix
equation (equation 12). This approach leads to a
numerical scheme which is at most second-order correct
in time (ie, when w=05 in equation 15). Earlier
studies’®'* have shown that this procedure frequently
leads to oscillatory solutions when a sharp concentration
frontis present. By using an implicit scheme, which is first-
order correct in time, one can avoid most of the
oscillations, but this will usually be at the expense of a
smeared (too dispersed) concentration front. Some of the
problems associated with the presence of oscillations and
excessive numerical dispersion can be eliminated by

making use of a higher-order integration scheme for the

time-derivative in the transport equation. Such a higher-
order scheme will become especially attractive when, as in
this study, higher-order basis functions are used. It was
shown earlier'>® that a third-order accurate temporal
integration scheme can be obtained by introducing
appropriate dispersion corrections into the numerical
solution of the convective—dispersive equation at steady-
state flow. Similar dispersion corrections can be derived
for the transient problem!®. For the present case this is
accomplished by redefining equation (8) as:

) ::(QRC)H—M—(ORCY
Liey=nt

1} o dc AL dc
A ep-28 S % ep+t
2[ax<9D ox qcﬂ 2]:0x< ox

where

qc>:|t =0 (32)

2 7
_ g At At

D =D __ +
60°R’ D7 =D+ 602
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Equation (32) is a time-centred, Crank-Nicolson type
scheme with correction factors applied to the dispersion
coefficient.

The finite element analysis, starting with equation (32)
instead of equation (8), proceeds along the same line as for
the flow equation. Substitution of L, (equation 32) for L,
in equation (11) and integration by parts of the spatial
derivatives yields:

[P:]H-At{X}H'Al:[Q:]t{X}t-i-{S} (34)

where

1

[Pij]:J[ <0D_dx >—+—~(pj(pl:idx (35a)
0

+dg; de; 6R
[QU] J\|: (QD q(p1> dx o

A7 (qu)i}dx (35b)

1

{8} = —%q‘”‘ +4); (35¢)
0
= GDSC +qé (36)

EXAMPLE

An example will be used to compare the accuracy and
computational efficiency of the four numerical schemes
discussed in the previous sections, i.e., finite differences
(FD), linear finite elements (LFE), mass-lumped linear
finite elements (LFE), and Hermitian cubic finite elements
(HFE). The example refers to a field infiltration
experiment!”’, in which water and chloride were allowed
to infiltrate into a deep, homogeneous soil profile. The
same experlment has been analysed numerically also by
Bresler?, Ungs et al.'8, Segol®, and by Gureghian er al.1%.
The hydraullc properties of the soil are:

()= {0.6829 —0.09524 In(h))  h< —29.484
0.4531—0.02732 In(|h|)  —29.484 <h< —14.495
(372) -
K(h)={19.34>< 1_04 [ ~3:4093 h< —29.484
516.8 || ~0-0781¢ —29484<h< —14.495 -
(37b)

where K is given in cm/day and h in cm. The initial and
boundary conditions are:

~ f0.1500+x/1200 0<x<60 |

(0= {0.2000 60<x<i2s 59

e(x,0)=0 (38b)

hO)= —14495  (0,=0.38) (380)
209 1<0.11667

0= {0 o (384)
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Table 1. Summary of numerical experiments for solution of the flow
equation (u, =0, I=125 cm, At=variable) )

Ax Number of g,  Number of CPU time
Method* (cm) elements, (cm) time steps (sec)
FD 0.50 250 0.50 459 41,70
FD 1.00 125 0.50 326 15.32
FD 2.50 50 0.50 176 3.73
FD 5.00 25 0.50 108 1.44
FD 2.50 50 0.10 279 6.22
FD 2.50 50 0.25 212 4.54
FD 2.50 50 0.50 176 3.73
FD 2.50 50 1.00 146 3.27
FD 2.50 50 2.50 116 2.64
FD 2.50 50 0.50 176 3.73
LFE 2.50 50 0.50 170 3.86
MFE 2.50 50 0.50 174 o382
SLP 5.00 25 0.50 156 9.41
2GP 5.00 25 0.50 132 6.60
3GP 5.00 25 0.50 170 9.91
4GP 5.00 25 0.50 149 10.19
4LP 5.00 25 0.50 145 792
SLP 5,00 25 0.50 156 9.41
SLP 5.00 25 0.50 156 9.41
S5LP 5.00 25 1.00 133 8.52
SLP 5.00 25 2.50 105 6.89
5LP 5.00 25 0.50 156 9.41
SLP 7.50 17 0.50 118 4.98
S5LP 10.00 13 0.50 94 3.30

*  FD=finite differences
LFE =linear finite elements
MFE =mass-lumped linear finite elements
2GP = Hermitian finite elements (two Gauss points)
3GP =Hermitian finite elements (three Gauss points)
4GP =Hermitian finite elements (four Gauss points)
4LP=Hermitian finite elements (four Lobatto points)
SLP = Hermitian finite elements (five Lobatto points)

oh
5 b)=0 (38¢)
g—i(z,z) =0 (38)

where x is given in cm, # in cm®/cm® and ¢ in mequiv./L
Additional parameters are: Dy7=0.6 cm?/day, 1=1.026
cm, k=0, and [=125 cm.

Table 1 gives a summary of the various computer runs,
including the execution (CPU) times needed to complete
the 0.4 day simultation on an IBM 360/91 computer. The
execution times refer to solutions of the flow equation
only; execution times for the combined flow and transport
equations were approximately 1009, higher. Computed
moisture distributions are given in Figs. 1--5. The solid
line in each Figure represents the assumed ‘correct’
solution, and was obtained by using increasingly smaller
spatial and time increments until all four numerical
schemes (FD, LFE, MFE, and HFE) generated essentially
the same results. The correct solution was also found to be
nearly identical to the three-term quasi-analytical
solution of Philip?° for relatively small times (Philip’s
solution diverges for large times).

The effects of different integration methods (equation
13) on results obtained with the Hermitian finite element
scheme are shown in Fig. 1. The 2-point Gaussian 2GP)
and 3-point Lobatto (3LP) integration schemes generate
moisture distributions that not only lag considerably
behind the correct solution, but also show some
oscillatory behaviour, especially during the initial stages

MOISTURE CONTENT (cm3/cm3)

o 0.20 0.30 _0.40
T T e |
r ‘ 87038
el
20 F 2 -
40+ .
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T 60+ e .
-
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w o Jlo 1
o pe
801 ‘0 -
I 26P,3LP -
100 3GP,4LP
4GP
- 5 LP (nodal volues)
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120+ -
L i | L | i

Figure 1. Effect of different numerical integration schemes
on computed moisture profiles (Hermitian finite elements)
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Figure 2. Moisture profiles obtained with finite

differences (FD) and linear finite elements (LFE)
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MOISTURE CONTENT (cm3/cm®)
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Figure 3. Moisture profiles obtained with mass-lumped
(MFE) and Hermitian finite elements (HFE)

ofinfiltration. Much better results are obtained with the 3-
point Gaussian (3GP) and 4-point Lobatto (4LP)
integration schemes. These schemes, however, generate
distributions which also lag behind the correct solution.
The most accurate results were obtained with the 4-point
Gaussian (4GP) and 5-point Lobatto (SLP) schemes.
Actually, the SLP-scheme is slightly better than the 4GP-
scheme, even though the execution time is less than for the
3GP-scheme (Table 1).

Results obtained with finite differences (FD) and linear
finite elements (LFE) are presented in Fig. 2, while Fig. 3
shows results obtained with mass-lumped linear finite
elements (MFE) and Hermitian finite elements (HFE,
SLP). A constant spatial increment (Ax) of 2.5 cm was used
for the three zero-order continuous schemes (FD, LFE,
and MFE), while the HFE-scheme used a Ax of 5 cm (see
also Table 1). Note that the FD- and LFE-schemes
generate solutions which deviate slightly from the correct
one, and that the computed moisture fronts are somewhat
smeared in comparison with the HFE-scheme. Results
obtained with the MFE-scheme (Fig. 3) are nearly
identical to those obtained with the LFE-scheme (Fig. 2),
except near the toe of the computed moisture fronts. No
oscillations were observed when mass-lumping was
applied to the linear finite element scheme.

While Figs. 2 and 3 demonstrate that the C* continuous
Hermitian finite element scheme generates the most
accurate results, Table 1 also shows that this scheme
consumes approximately 2.5 times as much computer
time as the various C° continuous schemes. The HFE-
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scheme hence does not immediately present an attractive
alternative to the other schemes, unless its relative
accuracy does not change dramatically with increasing
element size. The effects of changing Ax on computed
moisture distributions for FD and HFE are shown in
Figs. 4 and 5, respectively. Doubling the spatial
increments causes the computed front to move further
ahead of the correct solution in the case of FD, while the
front itself also becomes more dispersed. The execution
time, on the other hand, decreases from 3.7 to 1.4 sec
(Table 1). A doubling of the element size in the HFE-
scheme still leads to a fairly accurate description of the
moisture front (Fig. 5), although now some more serious
oscillations appear. The computer time in this case is
reduced from 9.4 to 3.3 sec.

Computed chloride distributions versus depth are
shown in Figs. 6 and 7. The most accurate results are
again obtained with the HFE-scheme. Also the FD- and
MFE- schemes generate fairly accurate results, albeit less
than for the HFE-scheme. Results obtained with the LFE-
scheme are considerably less accurate than those for the
other schemes. It appears that most of the observed
deviations between the LFE results and the correct
solution are generated during the early stages of
infiltration (Fig. 6). Some serious oscillations in computed
solute distributions are observed at that time, resulting in
a deeper penetration of the solute front after two hours.

Figures 1-7 demonstrate that the Hermitian finite
element scheme generates solutions which are superior to
those obtained with the three zero-order continuous

MOISTURE CONTENT (em3 /cm3)
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£225.0 {em)
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! ! i L 1 i

Figure 4. Effect of nodal spacing on computed moisture
profiles using finite differences
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MOISTURE CONTENT (cm3/cm3)
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Figure5. Comparison of Hermitian finite element solution
(Ax =10 cm) with correct solution

0 T I T I T I T ] T
£
S —|
I -
-
a
uj —
Q

Correct Solution
70 1 ' | ] i
(0] 50 100 150 200 250

CONCENTRATION , ¢ (megq/liter)

Figure 6. Chloride distributions obtained with finite
differences (FD) and linear finite elements (LFE)

schemes. Unfortunately, this is accomplished with
approximately twice as much computer time. Several
reasons account for this. First, the HFE-scheme generates
matrix equations for both flow and transport which have
a bandwidth of 7, while the three C° continuous schemes
produce matrix equations which have a bandwidth of
only 3. Hence, more time is needed for solution of the
Hermitian global matrix equation. Second, numerical
integration techniques were used to evaluate the integrals
of equation (13) for the HFE-scheme. This in itself already
leads to more computer time but, in addition, forces one to
a more time-consuming element by element assembly of
the global matrix equations.

An accurate comparison of the efficiency of the different
schemes is not easy because of the many parameters
affecting the final results. All results thus far were obtained
with a Crank—Nicolson scheme in time (w=0.5 in
equations 14 and 16). Execution times could be decreased
by approximately 309, with an implicit scheme (w = 1.0).
Computed moisture distributions in that case, however,
generally lagged the correct solution, especially for the C°
continuous schemes. Important reductions in execution
time were also possible by increasing the integration
tolerance parameters (u, and g, in 19). In the above
example, 4, and u, were set to 0.5 and 0.0, respectively.
Approximately the same results were obtained when u,
was varied between 0.1 and 2.5 ¢m, although in some cases
(notably for LFE and HFE) a few minor oscillations were
observed in the calculated curves when 1, equalled 2.5 ¢cm.

All curves thus far were obtained for a firsi-type,
constant pressure boundary condition at the soil surface

20

x {cm)

SOIL DEPTH,"
» ol
o o

(2]
(o]

——————— MFE (Ax=25cm) _|
00000 HFE {Ax=50¢cm)
Correct Solution

60

N W AN N I SR B
0 50 100 150 200 250

CONCENTRATION , ¢ (meg/liter}

Figure 7. Chloride distributions obtained with mass-
lumped linear (M FE) and Hermitian finite elements (HFE)
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MOISTURE CONTENT (cm®/cm?)
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Figure 8. Comparison of finite difference (FD), linear
Sinite element (LF E) and mass-lumped finite element (M FE)
solutions with correct solution

(equation 38c). Several computer runs were also made for
the case where a constant flux is given, ie., for

e
Ox

where g, is the prescribed flux, assumed to be 37.8 cm/day
(i.e., equal to the hydraulic conductivity at a moisture
content of 0.38 cm®/cm®). Results for FD, LFE, and MFE
are presented in Fig. 8. Note that the three schemes
generate accurate solutions, although the computed
fronts still remain slightly dispersed as compared to the
correct front. The HFE-scheme was found to nearly
duplicate the correct solution.

=4 (38)

x=0

DISCUSSION

From the examples given here, and several other
numerical experiments, it is concluded that the FD- and
MFE-schemes will generate the most stable solutions
" when a steep moisture front is present (e.g., infiltration
into a dry, coarse soil). These solutions, however, may
diverge somewhat from the correct solutions when the
simulation progresses in time, while the calculated
moisture front could become more dispersed (smeared
out) as compared to the correct front. The HFE-scheme
(notably the SLP-scheme) seems superior in locating the
correct spatial location of the moisture front, while the
calculated slope of the front is better described than with
the various zero-order continuous schemes. However,
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some oscillations may develop near the toe of the front,
especially when relatively large elements are present. Such
oscillations are characteristic of those cases where a sharp
moisture (or concentration) front needs to be simulated. It
appears that, at least from a practical peint of view, these
oscillations are often of minor importance, especially if
one is aware of their presence. For the experiments
discussed here, for example, small oscillations in
computed moisture distributions did not affect the
accuracy of the calculated concentration profiles. The
magnitude of the oscillations, furthermore, can often be
decreased by using smaller spatial and time increments;
this, of course, at the expense of more computer time. The
more non-linear the flow problem, the more oscillations
one may expect.

Several factors, other than those already discussed, will
affect the accuracy and computational efficiency of a
numerical scheme. For example, the programming details
of the iterative scheme in the flow equation will greatly
affect the efficiency of the program. These effects can easily
be greater than the inherent differences between two
numerical methods (e.g., between FD and HFE). The
magnitude of the time step is also an important factor, A
judicious choice of this parameter, including an automatic
adjustment of At during execution, can greatly improve
the efficiency of a program. The presence of adsorption
and decay reactions, furthermore, will also influence the
performance of a given numerical scheme. Larger spatial
and time increments are often possible in the numerical
solution of the transport equation when adsorption or
decay processes are present. Unfortunately, adsorption
and decay do not affect the solution scheme for the flow
equation.

Another important consideration for selecting a certain
numerical scheme is the required accuracy of the
simulation results. The governing flow and transport
equations contain several parameters which are difficult
to measure in the field, and often have a large degree of
uncertainty. Even the physical and chemical processes of
unsaturated—saturated transport are sometimes poorly
described by the governing equations. This suggests that
the choice of a numerical scheme should be weighted
against its potential use.
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